Цифрлі каталог


 

База данных: База IPR

Беті 3, Нәтижелерін: 25

Отмеченные записи: 0

64005
Умарова, Н. Н.
    Статистические методы в управлении качеством (использование программного продукта STATISTICA) : учебно-методическое пособие / Умарова Н. Н. - Казань : Казанский национальный исследовательский технологический университет, 2008. - 112 с. - ISBN 978-5-7882-0621-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 32.97

Кл.слова (ненормированные):
диаграмма -- калькулятор -- качество -- программа -- статистика
Аннотация: Рассмотрены простые статистические инструменты управления качеством и технология их применения с использованием программного продукта STATISTICA. Описаны примеры их использования и задачи для самостоятельного решения. Предназначено для студентов, обучающихся по специальностям 200503 «Управление качеством» и 220501 «Стандартизация и сертификация», изучающих дисциплину «Статистические методы в управлении качеством» а также для слушателей системы повышения квалификации.

Доп.точки доступа:
Бакеева, Р. Ф.

Умарова, Н. Н. Статистические методы в управлении качеством (использование программного продукта STATISTICA) [Электронный ресурс] : Учебно-методическое пособие / Умарова Н. Н., 2008. - 112 с.

21.

Умарова, Н. Н. Статистические методы в управлении качеством (использование программного продукта STATISTICA) [Электронный ресурс] : Учебно-методическое пособие / Умарова Н. Н., 2008. - 112 с.

Открыть исходную запись


64005
Умарова, Н. Н.
    Статистические методы в управлении качеством (использование программного продукта STATISTICA) : учебно-методическое пособие / Умарова Н. Н. - Казань : Казанский национальный исследовательский технологический университет, 2008. - 112 с. - ISBN 978-5-7882-0621-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 32.97

Кл.слова (ненормированные):
диаграмма -- калькулятор -- качество -- программа -- статистика
Аннотация: Рассмотрены простые статистические инструменты управления качеством и технология их применения с использованием программного продукта STATISTICA. Описаны примеры их использования и задачи для самостоятельного решения. Предназначено для студентов, обучающихся по специальностям 200503 «Управление качеством» и 220501 «Стандартизация и сертификация», изучающих дисциплину «Статистические методы в управлении качеством» а также для слушателей системы повышения квалификации.

Доп.точки доступа:
Бакеева, Р. Ф.

145830
Рябчун, С. А.
    Introduction to superfluidity and superconductivity : учебное пособие / Рябчун С. А. - Москва : Московский педагогический государственный университет, 2024. - 72 с. - ISBN 978-5-4263-0572-4 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 22.268

Кл.слова (ненормированные):
английский язык -- бозон -- квантовая механика -- сверхпроводимость -- сверхпроводник -- сверхтекучесть -- туннельный эффект -- уравнение боголюбова -- фермион -- эффект мейснера
Аннотация: These notes have appeared as a result of a one-term course in superfluidity and superconductivity given by the author to fourth-year undergraduate students and first-year graduate students of the Department of Physics, Moscow State University of Education. The goal was not to give a detailed picture of these two macroscopic quantum phenomena with an extensive coverage of the experimental background and all the modern developments, but rather to show how the knowledge of undergraduate quantum mechanics and statistical physics could be used to discuss the basic concepts and simple problems, and draw parallels between superconductivity and superfluidity.

Рябчун, С. А. Introduction to superfluidity and superconductivity [Электронный ресурс] : Учебное пособие / Рябчун С. А., 2024. - 72 с.

22.

Рябчун, С. А. Introduction to superfluidity and superconductivity [Электронный ресурс] : Учебное пособие / Рябчун С. А., 2024. - 72 с.

Открыть исходную запись


145830
Рябчун, С. А.
    Introduction to superfluidity and superconductivity : учебное пособие / Рябчун С. А. - Москва : Московский педагогический государственный университет, 2024. - 72 с. - ISBN 978-5-4263-0572-4 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 22.268

Кл.слова (ненормированные):
английский язык -- бозон -- квантовая механика -- сверхпроводимость -- сверхпроводник -- сверхтекучесть -- туннельный эффект -- уравнение боголюбова -- фермион -- эффект мейснера
Аннотация: These notes have appeared as a result of a one-term course in superfluidity and superconductivity given by the author to fourth-year undergraduate students and first-year graduate students of the Department of Physics, Moscow State University of Education. The goal was not to give a detailed picture of these two macroscopic quantum phenomena with an extensive coverage of the experimental background and all the modern developments, but rather to show how the knowledge of undergraduate quantum mechanics and statistical physics could be used to discuss the basic concepts and simple problems, and draw parallels between superconductivity and superfluidity.

141107
Kovalenko, A. V.
    Neural network technologies in economics : study aid / Kovalenko A. V. - Москва : Ай Пи Ар Медиа, 2024. - 174 с. - ISBN 978-5-4497-3189-0 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 65.05

Кл.слова (ненормированные):
creditworthiness -- economic condition -- financial condition -- neural network -- neural network technologies
Аннотация: The study aid covers the use in economics of a number of end-to-end technologies, such as “Artificial Intelligence” and “Neurotechnologies, Virtual and Augmented Reality Technologies”. The publication examines the use of neural network technologies in economic problems, such as assessing the financial and economic condition and creditworthiness of enterprises. In addition to basic information about neural networks and packages for working with them, such as Statistica Neural Networks and Neural Networks Toolbox of the Matlab system, the theoretical foundations for diagnosing the state of enterprises are given and the creation of 11 neural networks that implement this task in practice is shown. In addition, problems are proposed for independent solution in the Statistica Neural Networks and Neural Networks Toolbox packages of the Matlab system, as well as test questions for each chapter. The study aid is intended for students of enlarged groups of training areas “Mathematics and Mechanics”, “Informatics and Computer Science”, “Economics and Management”, studying the disciplines “Neural Network Technologies”, “Neural Network Technologies in the Processing of Economic Information”, “Information Systems in Economics”. It will be useful for researchers, graduate students, financial directors, managers, auditors, employees of credit institutions, etc.

Доп.точки доступа:
Kazakovtseva, E. V.

Kovalenko, A. V. Neural network technologies in economics [Электронный ресурс] : Study aid / Kovalenko A. V., 2024. - 174 с.

23.

Kovalenko, A. V. Neural network technologies in economics [Электронный ресурс] : Study aid / Kovalenko A. V., 2024. - 174 с.

Открыть исходную запись


141107
Kovalenko, A. V.
    Neural network technologies in economics : study aid / Kovalenko A. V. - Москва : Ай Пи Ар Медиа, 2024. - 174 с. - ISBN 978-5-4497-3189-0 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 65.05

Кл.слова (ненормированные):
creditworthiness -- economic condition -- financial condition -- neural network -- neural network technologies
Аннотация: The study aid covers the use in economics of a number of end-to-end technologies, such as “Artificial Intelligence” and “Neurotechnologies, Virtual and Augmented Reality Technologies”. The publication examines the use of neural network technologies in economic problems, such as assessing the financial and economic condition and creditworthiness of enterprises. In addition to basic information about neural networks and packages for working with them, such as Statistica Neural Networks and Neural Networks Toolbox of the Matlab system, the theoretical foundations for diagnosing the state of enterprises are given and the creation of 11 neural networks that implement this task in practice is shown. In addition, problems are proposed for independent solution in the Statistica Neural Networks and Neural Networks Toolbox packages of the Matlab system, as well as test questions for each chapter. The study aid is intended for students of enlarged groups of training areas “Mathematics and Mechanics”, “Informatics and Computer Science”, “Economics and Management”, studying the disciplines “Neural Network Technologies”, “Neural Network Technologies in the Processing of Economic Information”, “Information Systems in Economics”. It will be useful for researchers, graduate students, financial directors, managers, auditors, employees of credit institutions, etc.

Доп.точки доступа:
Kazakovtseva, E. V.

153728
Pyrkina, O. E.
    Probability Theory and Mathematical Statistic for Applications in Data Analysis : textbook / Pyrkina O. E. - Москва : Прометей, 2023. - 582 с. - ISBN 978-5-00172-475-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 22.17

Кл.слова (ненормированные):
data science -- анализ данных -- математическая статистика -- теория вероятностей -- цифровая экономика
Аннотация: The textbook «Probability Theory and Mathematical Statistic for Applications in Data Analysis» prepares readers for successful operation with information as a part of contemporary data science. The productive formation and development of the digital economy is impossible without the ability of specialists to operate competently and effectively with a continuously incoming stream of digital statistical data. To process such data and to make management decisions based on the data, skills and abilities of both technical and theoretical levels are required, that allows to carry out generalizations and make conclusions based on the information received. The textbook discusses step by step traditional topics of courses in probability theory and mathematical statistics as a theoretical foundation for data analysis. All course questions are considered with application of statistical functions and the Excel data analysis package. The course is supplemented with examples, tasks and test questions for self-examination. The textbook includes 20 chapters, an introduction and conclusion. The textbook can be used by students and lecturers of universities (in particular, the Financial University under the Government of the Russian Federation) in the course of «Data Analysis» (disciplines of the basic part of the mathematical cycle of disciplines, for a field of study 38.03.01 «Economics», study programs (concentrations): «International Finance» ( in English), «International Trade and Taxation» (in English), «World Economy and International Business» (with partial implementation in English), «World Finance» (with partial implementation in English), «International Business of Energy companies» (with partial implementation in English), level of study: bachelor\'s degree programs.

Pyrkina, O. E. Probability Theory and Mathematical Statistic for Applications in Data Analysis [Электронный ресурс] : Textbook / Pyrkina O. E., 2023. - 582 с.

24.

Pyrkina, O. E. Probability Theory and Mathematical Statistic for Applications in Data Analysis [Электронный ресурс] : Textbook / Pyrkina O. E., 2023. - 582 с.

Открыть исходную запись


153728
Pyrkina, O. E.
    Probability Theory and Mathematical Statistic for Applications in Data Analysis : textbook / Pyrkina O. E. - Москва : Прометей, 2023. - 582 с. - ISBN 978-5-00172-475-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 22.17

Кл.слова (ненормированные):
data science -- анализ данных -- математическая статистика -- теория вероятностей -- цифровая экономика
Аннотация: The textbook «Probability Theory and Mathematical Statistic for Applications in Data Analysis» prepares readers for successful operation with information as a part of contemporary data science. The productive formation and development of the digital economy is impossible without the ability of specialists to operate competently and effectively with a continuously incoming stream of digital statistical data. To process such data and to make management decisions based on the data, skills and abilities of both technical and theoretical levels are required, that allows to carry out generalizations and make conclusions based on the information received. The textbook discusses step by step traditional topics of courses in probability theory and mathematical statistics as a theoretical foundation for data analysis. All course questions are considered with application of statistical functions and the Excel data analysis package. The course is supplemented with examples, tasks and test questions for self-examination. The textbook includes 20 chapters, an introduction and conclusion. The textbook can be used by students and lecturers of universities (in particular, the Financial University under the Government of the Russian Federation) in the course of «Data Analysis» (disciplines of the basic part of the mathematical cycle of disciplines, for a field of study 38.03.01 «Economics», study programs (concentrations): «International Finance» ( in English), «International Trade and Taxation» (in English), «World Economy and International Business» (with partial implementation in English), «World Finance» (with partial implementation in English), «International Business of Energy companies» (with partial implementation in English), level of study: bachelor\'s degree programs.

58110
Kazakovtsev, B. A.
    Mental disorders in epilepsy / Kazakovtsev B. A. - Москва : Прометей, 2015. - 398 с. - ISBN 978-5-7042-2538-6 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 56.1

Кл.слова (ненормированные):
патогенез -- психическое расстройство -- эпилепсия
Аннотация: The monograph shows the opportunity to study the pathogenesis of mental disorders in epilepsy based on the characteristics of its fl ow using clinical methods, structural dynamic, epidemiological and statistical analysis. Structural and dynamic analysis of the major clinical manifestations of the disease (features of personality changes, paroxysmal disorders, psychotic symptoms, dementia) held in accordance with the main patterns of development of the disease, its types and stages. On the basis of the multi-axial classifi cation of epilepsy was developed a model that allows in a retrospective analysis of anamnestic data and clinical assessment to establish clinical and social criteria for prognosis prediction.

Kazakovtsev, B. A. Mental disorders in epilepsy [Электронный ресурс] / Kazakovtsev B. A., 2015. - 398 с.

25.

Kazakovtsev, B. A. Mental disorders in epilepsy [Электронный ресурс] / Kazakovtsev B. A., 2015. - 398 с.

Открыть исходную запись


58110
Kazakovtsev, B. A.
    Mental disorders in epilepsy / Kazakovtsev B. A. - Москва : Прометей, 2015. - 398 с. - ISBN 978-5-7042-2538-6 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК
ББК 56.1

Кл.слова (ненормированные):
патогенез -- психическое расстройство -- эпилепсия
Аннотация: The monograph shows the opportunity to study the pathogenesis of mental disorders in epilepsy based on the characteristics of its fl ow using clinical methods, structural dynamic, epidemiological and statistical analysis. Structural and dynamic analysis of the major clinical manifestations of the disease (features of personality changes, paroxysmal disorders, psychotic symptoms, dementia) held in accordance with the main patterns of development of the disease, its types and stages. On the basis of the multi-axial classifi cation of epilepsy was developed a model that allows in a retrospective analysis of anamnestic data and clinical assessment to establish clinical and social criteria for prognosis prediction.

Беті 3, Нәтижелерін: 25

 

Барлық түсімдер 
Немесе қызығушылық танытқан айыңызды таңдаңыз

 

Scroll to Top